Bert Groenewoudt

The Whole Story. Bridging the Gap between Landscape-archaeological Data from Drylands and Wetlands

Received December 14, 2014
Revised March 4, 2015
Accepted April 24, 2015
Published August 18, 2015

Edited by Gerd Graßhoff and Michael Meyer, Excellence Cluster Topoi, Berlin

eTopoi ISSN 2192-2608
http://journal.topoi.org

Except where otherwise noted, content is licensed under a Creative Commons Attribution 3.0 License:
http://creativecommons.org/licenses/by/3.0
Bert Groenewoudt

The Whole Story. Bridging the Gap between Landscape-archaeological Data from Drylands and Wetlands

Detailed historical reconstructions require high-quality data. In the traditionally densely settled higher and drier Pleistocene sandy areas (`drylands') of the North European Plain (the European aeolian sand belt) and comparable regions elsewhere evidence-based reconstructions are hampered by poor preservation of archaeological remains and archaeologically relevant deposits. This problem can be partially solved by combining, on a microregional level, dryland data with data from nearby wetland pockets (`wetlands'), in particular stream valleys. This asks for an integrated and systematic inventory of all available data. For this purpose an instrument was developed: the Landscape-Land use Diagram (LLAND). Because data from dry and wet contexts are to some degree supplementary, integrated analysis is essential for obtaining information on the full range of economic and ritual practices. This is demonstrated by research carried out in the valley of the small river Regge (the Netherlands), the results of which are being treated as a stratified landscape-archaeological sample. This paper does not focus on cultural interpretation but on methodology, specifically the potential of data and the benefits of an integrated approach.

Site preservation; landscape archaeology; alluvial archaeology; off-site archaeology; sampling strategy; LLAND diagram.

1 Introduction

So far excavations in the dry Pleistocene sandy areas of the North European Plain (`drylands') have provided a globally incomplete picture of the region's settlement, landscape and land use history. How may we improve this situation? Conducting yet more excavations tends to contribute little. This is in part a result of the prevalent archaeological research traditions, which for decades have concentrated on settlement studies whilst largely neglecting other archaeological phenomena, such as those related to off-site activity. To some extent this also applies to archaeological research in alluvial wetland contexts, which often has a strong emphasis on techniques and methods rather than analysing data. However, the current stagnation in our studies of the past is largely due to poor preservation. Uncharred organic remains are rarely preserved in the deep Pleistocene sandy soils, which are characterised by a low water table and acid, well-oxygenated soils.¹ In the past an overall lack of suitable natural stone has led to the use of wood and other perishable materials for construction of shelters/houses, with the result that all that remains of foundation

¹ Renfrew and Bahn 2000; Cronyn 2001; Kars and Van Heeringen 2008; Huisman and Deeben 2009.
beams, posts, pits, ditches etcetera are discolorations in the soil, i.e. soil features. Due to a combination of biotic and a-biotic processes even these soil features fade over time and may finally become completely invisible.

Archaeological studies of the scarce wetland contexts (‘wetlands’) in the same areas create a very different picture. There, archaeological remains and organic deposits including palaeobotanical material are often exceptionally well preserved. This makes these locations potentially highly important from a landscape archaeological perspective. At the same time the data from these wetland contexts produce appear to be fundamentally different from that from adjoining drylands to the extent that the two landscape zones seem worlds apart. They certainly are in terms of archaeological fieldwork; dryland and wetland locations are rarely investigated in conjunction.

This paper presents the outcome of a test case exploring the feasibility of the integration of both types of data within a micro-regional context, and the potential of such an approach to enhance our insight in the cultural and landscape history of areas where poor preservation conditions prevail. For this purpose a landscape-land use (LLAND) diagram was developed (see Material and Method section).

Our research questions were twofold:
1) What is the nature of the relation between wetland and dryland data from the same area?
2) Is an integrative approach feasible, and what are the potential benefits and limitations?

From a methodological perspective these questions are highly relevant to all areas where detailed cultural-historical and landscape-historical reconstructions are being hampered by poor preservation. Our pilot-study area was the valley of the river Regge, in the east of the Netherlands.

2 Wetland pockets in dry landscapes

Wetland archaeology undoubtedly ranks among the best preserved and most informative archaeology of North- and North-west Europe. Waterlogged conditions are especially widespread in lowland coastal areas around the North Sea, resulting in extremely well preserved archaeological sites, structures and deposits from various periods. However waterlogged conditions also occur in dry inland areas such as in the European aeolian sand belt (Fig. 1). In this area wetland conditions survive predominantly in isolated depressions such as Pleistocene pingo and kettle holes, and in the valleys of rivers and major brooks; of the once vast mires, well known for their prehistoric wooden trackways and votive depositions very little now remains. Especially in places where river valleys border on high and dry river dunes or coversand ridges, which were usually densely settled during prehistory and in more recent periods, such ‘wetland pockets’ may contain rich and generally well-preserved archaeology.

In the Netherlands these recent insights mainly proceed from research carried out during the past two decades in the wake of a large number of nature (biodiversity and ecology)
development schemes in stream valleys. A systematic investigation, and protection, of this inland wetland archaeology has proved to be challenging because of its unpredictable nature and generally adverse research conditions. Nonetheless substantial progress has been made, resulting in predictive models of the distribution of archaeological phenomena based on archaeological as well as historical-geographical patterns in areas contiguous to watercourses. Guidelines have been developed to allow targeted research and improve effectiveness and cost-efficiency. These guidelines differ from those defined by Howard and Macklin and Howard et al. for the Holocene river valleys of Britain in that they are more 'contextualized': they proceed from a wider geographical and cultural-historical perspective (as suggested by Coles) and largely exclude formation processes. In Flanders, Deforce and Bastiaens took on an inventory of palaeoecologically valuable deposits in wet contexts, ‘value’ in this case being defined in terms of archaeological relevancy and potential to contribute to historical frames of reference on behalf of nature development. Because of their potentially high information value the presence of such deposits in the Netherlands is one of the factors evaluated in site assessments in archaeological heritage management.

Wetland archaeology in the valleys of water courses in the European aeolian sand belt may seem very different from the archaeology of surrounding upland areas, but it should not be studied in isolation. The importance of integrating dryland and wetland data both within (micro) regional and interregional contexts can hardly be overestimated. Rensink et al. specifically emphasised the importance of studying stream valleys not only from a long-term perspective but also as part of the wider cultural landscape. In this regard it is important to keep in mind that zones along small inland rivers were never settled by

Fig. 1 | The European aeolian sand belt (after Hilgers 2007). Arrow indicates research area.
people of the wetlandsl9, i.e. people living in and socio-economically interdependent with, wetland landscapes. In terms of land use the evidence from the waterlogged environments discussed here mostly reflects specialized off-site activities that were limited to these stream valleys20; there are no indications of settlement.21 The problematic distinction between ‘wet sites’ and ‘wetland sites’22 is in the context of our research neither useful nor relevant.

3 Material and method

The potential of an integrative approach to dryland and wetland data was assessed by using the detailed information generated by recent research carried out along the river Regge in the east of the Netherlands. The focus of the fieldwork was landscape archaeological, as recommended by Gerritsen,23 i.e. broad in scope, interdisciplinary, and concentrating on the interaction between people and landscape from a long-term perspective.24 This approach renders the generated dataset particularly suitable to provide answers to our research questions. Our analysis will focus on the presence and potential of the data, not on cultural interpretation. The dryland data derive from some of the large river dunes along the Regge valley, the wetland data from adjoining locations or from elsewhere in the valley. The dataset will be treated as a stratified sample of the entire Regge valley (Fig. 2). Level 1 of this stratigraphy consists of a 5km-long section of the river valley near the village of Nijverdal (5km-Nijverdal section; Fig. 3). Level 2 consists of all studied locations within this section, while subsamples from the locations that were studied in detail for various reasons form Level 3 (Fig. 4). In specific sub-zones artefacts were collected stratigraphically by screening the soil.

After briefly introducing our research area and presenting an inventory of the available data (Table 1) we will reflect on the potential benefits (and limitations) of combining datasets. In order to facilitate this analysis the instrument of a Landscape-Land use Diagram (LLAND) was developed, which for each context separately (wetland and dryland) presents a diachronic overview of all available landscape and land use data (Fig. 5). Landscape data encompass both natural and anthropogenic phenomena and processes. The diagram only includes presence/absence for each data category; numbers between brackets refer to individual datasets listed in Table 1. We will not discuss them in detail here.25 All scientific dates have been summarised in Table 2. The results of the combination of both datasets were qualitatively tested for general applicability by comparing them to data from similar regions. The term ‘river’ in this paper refers to any medium to small natural watercourse, including those that might more properly be called a brook.

Most of the data derive from recent excavations at Nijverdal-Eversberg, further referred to as ‘Eversberg’26 and Nijverdal-Zuna’s Hooiland, further referred to as ‘Zuna’.27 Although both were rescue excavations, they were guided by specific, multidisciplinary questions regarding the reconstruction of long-term interaction patterns between land use and landscape, with a focus on phenomena of an as yet uncertain nature and age. Consequently field strategies needed to be flexible. Specialist input included archaeobotany, archaeozoology, geomorphology, physical geography and micromorphology, and was sup-

19 B. Coles and J. Coles 1989
20 Fontijn 2004
21 De Rooij [Unpublished]
22 Purdy 1999; Menotti 2012
23 Gerritsen and Rensink 2004
24 Thomas and David 2008; Kluving, Lehmkuhl, and Schütt 2012; Kluving and Gutman-Bond 2012
25 Groenewoudt 2014
26 Pronk 2008; Gerrets, Opbroek, and Williams 2012
27 Groenewoudt 2002b; Groenewoudt 2004; Kreckelbergh 2008; Dyselinck, Moser, and Witte 2012
implemented by radiocarbon and dendrochronological dating. Small-scale research was carried out at Nijverdal-Groene Mal, Nijverdal-Velderberg and Nijverdal-Veldkamp.

28 Willemse 2005a; Willemse 2005b.
30 Gerrets, Opbroek, and Wiliams 2012.
Tab. 1 | Origin (x) and character of the available datasets from the 5km-Nijverdal section of the river Regge. Datasets from wetland contexts marked + provide important land use information concerning nearby dry land.

<table>
<thead>
<tr>
<th></th>
<th>DRY</th>
<th>WET</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>x</td>
<td>physical geography, geomorphology</td>
</tr>
<tr>
<td>2</td>
<td>x</td>
<td>arable farming: ‘Plaggen’ Soil (Late-Post Medieval)</td>
</tr>
<tr>
<td>3</td>
<td>x</td>
<td>pedology: wind erosion (Middle-Late Bronze Age)</td>
</tr>
<tr>
<td>4</td>
<td>x</td>
<td>palaeobotany: vegetation (Middle Mesolithic)</td>
</tr>
<tr>
<td>5</td>
<td>x</td>
<td>archaeobotany: vegetation (Middle Ages)</td>
</tr>
<tr>
<td>6</td>
<td>x</td>
<td>hunter-gatherer activity (Middle-Late Mesolithic)</td>
</tr>
<tr>
<td>7</td>
<td>x</td>
<td>hunter-gatherer activity (Middle-Late Mesolithic)</td>
</tr>
<tr>
<td>8</td>
<td>x</td>
<td>settlement (Middle Neolithic)</td>
</tr>
<tr>
<td>9</td>
<td>x</td>
<td>settlement (Late Neolithic)</td>
</tr>
<tr>
<td>10</td>
<td>x</td>
<td>settlement? (Middle Bronze Age)</td>
</tr>
<tr>
<td>11</td>
<td>x</td>
<td>settlement (Late Bronze Age)</td>
</tr>
<tr>
<td>12</td>
<td>x</td>
<td>arable farming: plough marks (Middle-Late Bronze Age and/or Iron Age)</td>
</tr>
<tr>
<td>13</td>
<td>x</td>
<td>settlement (Late Iron Age)</td>
</tr>
<tr>
<td>14</td>
<td>x</td>
<td>settlement? (Early-Middle Roman period)</td>
</tr>
<tr>
<td>15</td>
<td>x</td>
<td>hunter-gatherer activity (Late Palaeolithic-Early Mesolithic)</td>
</tr>
<tr>
<td>16</td>
<td>x</td>
<td>charcoal burning: charcoal kilns (Middle Ages)</td>
</tr>
<tr>
<td>17</td>
<td>x</td>
<td>palaeobotany: vegetation (Late Neolithic)</td>
</tr>
<tr>
<td>18</td>
<td>x</td>
<td>fluvial activity (Early Neolithic)</td>
</tr>
<tr>
<td>19</td>
<td>x</td>
<td>fluvial activity (Late Neolithic)</td>
</tr>
<tr>
<td>20</td>
<td>x</td>
<td>fluvial activity (Middle Bronze Age)</td>
</tr>
<tr>
<td>21</td>
<td>+ x</td>
<td>physical geography, fluvial activity (Late Mesolithic-Early Neolithic, Iron Age)</td>
</tr>
<tr>
<td>22</td>
<td>+ x</td>
<td>palaeobotany: human impact on vegetation (Early-Middle Neolithic)</td>
</tr>
<tr>
<td>23</td>
<td>+ x</td>
<td>palaeobotany: human impact on vegetation (Late Bronze Age-Roman period)</td>
</tr>
<tr>
<td>24</td>
<td>+ x</td>
<td>pedology: wind erosion (Middle Bronze Age)</td>
</tr>
<tr>
<td>25</td>
<td>+ x</td>
<td>pedology: wind erosion (Middle-Late Iron Age)</td>
</tr>
<tr>
<td>26</td>
<td>x</td>
<td>palaeobotany: woodland management (Early Medieval)</td>
</tr>
<tr>
<td>27</td>
<td>x</td>
<td>hunter-gatherer activity (Late Mesolithic-Early Mesolithic)</td>
</tr>
<tr>
<td>28</td>
<td>x</td>
<td>ritual activity: ritual deposition (Late Neolithic)</td>
</tr>
<tr>
<td>29</td>
<td>x</td>
<td>ritual activity: ritual deposition (Middle-Late Iron Age)</td>
</tr>
<tr>
<td>30</td>
<td>+ x</td>
<td>archaeozoology: animal husbandry (Middle-Late Iron Age)</td>
</tr>
<tr>
<td>31</td>
<td>+ x</td>
<td>settlement (Late Neolithic)</td>
</tr>
<tr>
<td>32</td>
<td>x</td>
<td>Infrastructure: wooden trackway (Middle Neolithic)</td>
</tr>
<tr>
<td>33</td>
<td>x</td>
<td>Infrastructure: wooden trackway (Late Neolithic)</td>
</tr>
<tr>
<td>34</td>
<td>+ x</td>
<td>settlement? (Neolithic-Middle Bronze Age)</td>
</tr>
<tr>
<td>35</td>
<td>+ x</td>
<td>settlement Middle Bronze Age</td>
</tr>
<tr>
<td>36</td>
<td>x</td>
<td>fishing: fish weirs (Late Neolithic)</td>
</tr>
<tr>
<td>37</td>
<td>x</td>
<td>fishing: fish weirs (Early Bronze Age)</td>
</tr>
<tr>
<td>38</td>
<td>x</td>
<td>fishing: fish weirs (Early Iron Age)</td>
</tr>
<tr>
<td>39</td>
<td>x</td>
<td>infrastructure: wooden trackway (Early Middle Ages)</td>
</tr>
<tr>
<td>40</td>
<td>+* x</td>
<td>hunter-gatherer activity (Late Mesolithic)</td>
</tr>
<tr>
<td>41</td>
<td>+ x</td>
<td>settlement (Middle-Late Iron Age)</td>
</tr>
</tbody>
</table>

4 Context: the Regge valley

The test area is part of the valley of the river Regge, a small stream which cuts into the Pleistocene sandy soils of the eastern Netherlands, shaped largely by the combined action of wind, water and ice during the last two ice ages, the Saalian and Weichselian.31 During the coldest phase of the Weichselian (Younger Dryas) the Regge was a braided river in a relatively wide floodplain, with many shoals and several channels. During dry periods quantities of sand in the floodplain would be deflated to form elongated dunes.

alongside the valley. These sandy ridges can be up to several hundred metres wide and
dezers long, and today they are still raised ca. 5 m above the valley bottom.
The dunes are asymmetrical: steep towards the river, gently sloping on the other side.

Large-scale (aeolian) sand drifting slowed down by the early Holocene (ca. 9700 BC)
as postglacial climatic amelioration gained pace; vegetation colonised and stabilised the
uneven dune landscape, and the Regge became a meandering stream with only one main
channel. As a result of erosion of the outer bends and sedimentation in the inner bends
the course of the river gradually migrated downstream, while meandering caused further
erosion of the valley bottom and edges. Sediments within the river channel are mainly
composed of sandy channel deposits and peaty and loamy gully infills.
<table>
<thead>
<tr>
<th>Location</th>
<th>Lab. code</th>
<th>Information</th>
<th>14C BC/AD probability</th>
<th>Dendrochronology BC</th>
<th>OSL BC</th>
</tr>
</thead>
<tbody>
<tr>
<td>EV</td>
<td>SUERC-35691</td>
<td>LS/LU</td>
<td>6270–5985</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EV</td>
<td>KIA44265</td>
<td>LS/LU</td>
<td>6211–6026</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EV</td>
<td>KIA44266</td>
<td>LS/LU</td>
<td>6379–6239</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EV</td>
<td>SUERC-35690</td>
<td>LU</td>
<td>7330–7080</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EV</td>
<td>KIA44264</td>
<td>LU</td>
<td>1489–1321</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EV</td>
<td>KIA44268</td>
<td>LU</td>
<td>599–388</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EV</td>
<td>KIA44267</td>
<td>LU</td>
<td>1229–981</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EV</td>
<td>SUERC-35692</td>
<td>LU</td>
<td>AD1160–1010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EV</td>
<td>SUERC-35693</td>
<td>LU</td>
<td>AD1260–1040</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EV-GM</td>
<td>KIA37873</td>
<td>LS/LU</td>
<td>404–212</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EV-GM</td>
<td>KIA37874</td>
<td>LS/LU</td>
<td>2135–1946</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EV-GM</td>
<td>KIA37966</td>
<td>LS/LU</td>
<td>366–185</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EV-GM</td>
<td>KIA44262</td>
<td>LS</td>
<td>351–55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EV-GM</td>
<td>KIA44261</td>
<td>LS</td>
<td>161–19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EV-GM</td>
<td>KIA44262</td>
<td>LS</td>
<td>599–232</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EV-GM</td>
<td>KIA44263</td>
<td>LS</td>
<td>599–208</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GM</td>
<td>UC–13179</td>
<td>LS</td>
<td>6215–6021</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GM</td>
<td>UC–13246</td>
<td>LS</td>
<td>3941–3665</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EV</td>
<td>X5258</td>
<td>LS/LU</td>
<td>1400–740</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EV</td>
<td>X5259</td>
<td>LS/LU</td>
<td>1750–1010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EV</td>
<td>NCL–7611087</td>
<td>LS/LU</td>
<td>310–270</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EV</td>
<td>NCL–7611088</td>
<td>LS/LU</td>
<td>1560–1000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZU</td>
<td>UC–20031</td>
<td>LS</td>
<td>ca. 5136</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZU</td>
<td>GrA 52642</td>
<td>LS/LU</td>
<td>AD692–887</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZU</td>
<td>GrA 52784</td>
<td>LU/LU</td>
<td>768–431</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZU</td>
<td>GrA 52616</td>
<td>LU/LS</td>
<td>788–537</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZU</td>
<td>GrA 52781</td>
<td>LU/LS</td>
<td>774–454</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZU</td>
<td>GrA 52617</td>
<td>LU/LS</td>
<td>2110–1889</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZU</td>
<td>GrA 52119</td>
<td>LU/LS</td>
<td>2463–2211</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZU</td>
<td>GrA 52 621</td>
<td>LU/LU</td>
<td>AD771–947</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZU</td>
<td>GrA 52622</td>
<td>LU/LS</td>
<td>771–431</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZU</td>
<td>GrA 52 623</td>
<td>LS/LS</td>
<td>AD771–947</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZU</td>
<td>GrA 52635</td>
<td>LU/LS</td>
<td>3991–1800</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZU</td>
<td>GrN–25182</td>
<td>LU</td>
<td>4310–3826</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZU</td>
<td>GrN–22183</td>
<td>LU</td>
<td>3941–3532</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZU</td>
<td>zul 21.0</td>
<td>LU/LS</td>
<td>ca. 1398</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZU</td>
<td>zul 22.2</td>
<td>LU/LS</td>
<td>ca. 3893</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZU</td>
<td>zul 23.1</td>
<td>LU/LS</td>
<td>ca. 3923</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZU</td>
<td>zul 26.1</td>
<td>LU/LS</td>
<td>ca. 3893</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZU</td>
<td>zul 29.1</td>
<td>LU/LS</td>
<td>ca. 3877</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZU</td>
<td>zul 27A</td>
<td>LU/LS</td>
<td>ca. 2246</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZU</td>
<td>zul 28.0</td>
<td>LU/LS</td>
<td>ca. 3561</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZU</td>
<td>UC–3102</td>
<td>LU</td>
<td>1615–1450</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZU</td>
<td>UC–3103</td>
<td>LU</td>
<td>1671–1445</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tab. 2 | Scientific dates from the 5km-Nijverdal section of the river Regge: radiocarbon, dendrochronology, OSL. Italic: unreliable date. Locations: EV: Eversberg (Gerrets, Opbroek, and Williams 2012); EV-GM: Eversberg-Groene Mal: Willemse 2005a; ZU: Zuna (Groenewoudt 2002b; Dyselinck, Moser, and Witte 2012).

The Regge has always been a habitable corridor through otherwise mostly marshy lands which until well into the Middle Ages were virtually uninhabited.32 In prehistory the higher grounds along the river were already densely settled. Both in landscape and in archaeology the upper course of the Regge differs fundamentally from the river’s mid-

32 Van Beek and Groenewoudt 2011
dle section, the location of the 5km-Nijverdal section. Upstream the still narrow river meandered through a wide floodplain in which many coversand ridges were the only permanently dry locations. Here, virtually the only archaeological remains are traces of Late Palaeolithic and Mesolithic hunter-gatherer activity and of dispersed (post)medieval settlement. In its middle and lower sections, on the other hand, the Regge flows through a valley hemmed in by elongated river dunes. The archaeology in this section is much more varied and suggestive of a much longer settlement history.
5 Different data

Our data show that dryland and wetland data from the Regge valley are indeed very different, and functionally to some extent even complementary. This may be a product of a situation in which one of these landscape zones was not exploited in certain periods, or at least not in an archaeologically visible manner. However, the specific nature of the archaeological phenomena found in wetland contexts strongly suggests that the wetland-dryland discrepancy reflects historical reality. It has also been established that alluvial wetland contexts may contain evidence for human activity from periods of which immediately adjoining higher grounds contain absolutely no trace. As we know only too well, however, absence of evidence (artefacts, structures) does not equal evidence of absence (of human activity).

Reversely, in other cases the higher areas along a water course turn out to have been the scene of intensive human activity which is also detectable in depressions as debris and blown-out fields but which has left no palynological markers. This situation is almost certainly the result of the – at that time – overall dense woodland vegetation in the valley, which blocked the distribution of pollen in this direction. With regard to the large-scale, Late Bronze Age sand drifts at the Eversberg, an example of anthropogenic landscape dynamics, the situation is comparable. As a result of the dominant winds this sand was almost exclusively blown east; very little was deposited west, in the valley. Both examples emphasise the importance of – literally – multiple research angles, both spatially and methodologically.

Also the range of variation displayed by wetland and dryland archaeology in the study area is different. The research conducted at the Eversberg creates the impression of a much greater archaeological variation in the dryland zone than in the wetland area, and also of apparent differences in the continuity of activities in the two landscape contexts. Land use on the Eversberg was both highly varied and changeable. Activities in the adjoining river valley, on the other hand, seem to have been limited to grazing, ritual activity and dumping settlement debris. Information on dryland activities at Zuna is limited but here, too, exploitation of the river valley seems to have been dominated by long-term, extensive and essentially unchanging activities (fishing, wood cutting, grazing, infrastructural constructions?). However, these activities were intermittent, as the greatly divergent dates show (see below).

Obviously every archaeological dataset has its own limitations. While stratified landscape archaeological sampling (Fig. 2) may certainly contribute to a more balanced dataset we will never have an entirely representative sample. When combining wetland and dryland datasets a constant awareness of the fundamentally different and highly variable nature of the formation processes involved is essential. The fact that a phenomenon appears to be limited to wet contexts may simply be a result of different preservation conditions.

6 Representativity

Is the 5km-Nijverdal section of the Regge valley a representative sample in terms of archaeological phenomena and landscape history? Many case studies published after the inventories conducted by Gerritsen and Rensink and Rensink have created the impression that the archaeology of waterlogged environments in river valleys is structurally distinct in other regions as well, but that a relation with adjoining higher grounds is universal. With regard to archaeological features the record is dominated by revetments,
wet infrastructural phenomena, fords, bridges, watermills, watering places, waste dumps, ‘kill sites’ connected to hunting, fisheries, ritual(?) deposits and traces of the extraction of raw materials.36 A spectacular example from north-eastern Germany is a Bronze Age battlefield in the valley of the river Tollense.37

The conclusion that the 5km-Nijverdal section of the Regge valley constitutes a representative sample is confirmed when we look at the observed landscape and archaeological phenomena from a wider perspective. Evidence of intensive sand drifting documented at Zuna <3> is not an isolated case. In recent years archaeological excavations have produced a growing body of evidence for the existence of prehistoric sand drifts along terraced Dutch river valleys that were caused by the reclamation of naturally already impoverished soils and by an over-exposure of the Late Glacial sandy landscape underneath, sparking off intense drifting.38 Rising groundwater tables and periodic peak discharges in rivers from late prehistory onwards have also been documented at many locations. The main cause of these phenomena was large-scale deforestation.39 Paradoxically, it is the lower parts of the landscape that were exploited more intensively and in the Late Iron Age sometimes even briefly settled.40 In many regions ritual depositions cluster in wetland contexts such as river valleys, which is why such landscape zones are being labelled ‘sacrificial landscapes’.41 A clustering of depositions near fords (Eversberg) has often been observed.42 Pottery depositions <28,29> are a common phenomenon in alluvial wetland contexts.43 Also trackway-like wooden structures <32,29> near fords and along river banks are known from a number of stream valleys,44 as are fishweirs <36,37,38>.45

7 Data integration

The overall conclusion is that limiting our studies to the high and dry parts of the landscape will indeed result in a biased image of both the archaeological reality and the micro-regional settlement history. The same conclusion seems warranted for the nearby wetland contexts. Combining wetland and dryland data certainly fills in gaps (see Fig. 5). The building of linear infrastructure (roads, railroads, gas pipes, underground power lines) is ideally suited to collect data from both contexts. However, merely lumping the two datasets together will not in itself generate interesting new information and fresh insights. This requires not only an integral (micro-) regional approach but also a theoretically explicit, question-oriented one, which should translate into serious interdisciplinary research and an awareness of phenomena that break the mould.46 A study by Mazurkevich et al.47 on the ‘neolithisation’ process along the Western Dvina river, North-west Russia, is a textbook example.

Most important perhaps is a holistic perspective, and it is essential that cultural archaeologists and geo and environmental archaeologists cooperate in projects from the start, and not just in the post-excavation phase. Such research may benefit greatly from the

37 Jantzen et al. 2010.
38 Willemsen and Groenewoudt 2012.
39 Groenewoudt et al. 2007; Groenewoudt 2012.
40 Lubberink and Willemsen 2009; Van Beek 2009.
42 Drenth and J. Roymans 2004; J. Roymans [Unpublished].
43 Bulten, Van der Heijden, and Hamburg 2002.
concept of landscape biography. Rensink et al. proposed the following research topics: 1) Material culture studies; 2) Vegetation and landscape development; 3) Stream valleys as a source of food and raw materials; 4) Structure and long-term landscape development; 5) The socio-cultural division of landscape. A systematic, transparent inventory of all available data in the form of a LLAND diagram turns out to be a suitable tool to assess the options for carrying out such research. And it facilitates systematic source criticism. It also allows other researchers to verify to what degree claims and conclusions are underpinned by solid evidence. Depending on the research questions a LLAND diagram can be made more specific, for example thematically.

The LLAND diagram for our study area clearly shows that the wetland data encompass a briefer period but that they are also much more varied. This in itself suggests that they would allow more reliable and detailed reconstructions than those we possess today, and that also in this context wetland data are 'high-resolution' data. In micro-regions where there are dryland settlement and wetland 'pockets' in close proximity, such as in our study area, the wetland dataset can greatly increase our knowledge of human exploitation of the nearby drylands and of the cultural history of the micro-region as a whole, both for land use and for landscape. Wetland datasets contain information on economic and ritual activities specific to wetland contexts; but what is equally important is that they can also supply valuable information on the exploitation of nearby dryland zones, specifically settlement indicators and evidence for anthropogenic erosion caused by deforestation and agriculture. With regard to the reconstruction of vegetation history and the impact of human action on vegetation in these and similar areas we largely depend on botanical data from wetland contexts.

The availability of a large number of scientific dates proved to be crucial for building a solid chronological framework, which is itself indispensable for identifying connections between wetland and dryland evidence, and for placing traces of off-site activity – often poorly dated archaeologically – in a specific chronological context. Even a few charcoal-based radiocarbon dates may suffice to elucidate human activity in situations where other indicators are lacking. In the case of the Eversberg 'site' a sampling strategy geared to the systematic collection of artefacts – a strategy which normally only applied to hunter-gatherer artefact scatters – proved to be crucial. Without this strategy several occupation phases, specifically those which had left no archaeological features, would certainly have been overlooked. Both in alluvial dryland and in wetland contexts the material manifestation of off-site economic activities and those of a potentially non-economic (i.e. ritual?) nature deserve much more attention, as do phenomena related to landscape dynamics, anthropogenic or otherwise (fluvial erosion, sand drifting and soil degradation). In terms of data acquisition there is evidently much to be gained by linking wetland and dryland evidence on a micro-regional level. What has also become clear is that the information yield of dryland excavations may be significantly increased by investigating land use in its broadest sense, instead of merely excavating the immediately obvious and familiar archaeology.

48 Kolen 1993
49 Rensink, Gerritsen, and J. Roymans 2006
50 Menotti 2012
51 Pelisiak, Rybicka, and Ralska-Jasiewiczowa 2006; Forysiak et al. 2010
52 Raab et al. 2011
53 Groenewoudt 2002a; Smit 2010
8 Continuity

Our studies revealed that it is difficult to define exact site boundaries on the larger river dunes along the Regge. Often the 'site' is rather a palimpsest zone, an accumulation of archaeological material covering an extended chronological range and with at best internal fluctuations in artefact density and composition; Bailey (2007) uses the term 'cumulative palimpsests'. This conclusion confirms that our decision to treat our research locations not as 'sites' but as landscape samples was methodically correct. Palimpsests such as the Eversberg 'site' are sometimes called 'persistent places', i.e. places that were never completely abandoned.54 Such places are important because they give us an opportunity to study the interaction between people and their environment from a long-term perspective. The fact that the archaeology of one particular period may not be intact – damaged by subsequent occupation of the location, for example – is from a landscape-archaeological perspective irrelevant; rather, what matters most is identifying, dating and contextualising forms of land use, instead of documenting well-preserved archaeological structures. In this context 'negative' observations (the absence of specific phenomena) may be equally valuable.

As said before the wetland archaeology of the Pleistocene inland regions of North-west Europe is largely an off-site archaeology, i.e. reflecting specialised activities carried out by the inhabitants of nearby settlements. The general assumption is that the character and distribution of this kind of archaeology in river valleys are largely determined by settlement and land use patterns on nearby high grounds, and that it clusters where such valleys border locations with long-term or frequent occupation. This may be true in many cases, but a reverse situation is also thinkable. The valleys of minor and major water courses in inland lowland areas of North-western Europe probably had their own 'persistent places', focal points of activity during longer periods of time, which influenced spatial behaviour and spatial patterns in the wider landscape. Such sites may be expected at river crossings (Du. voordes) and confluences,55 but no doubt also at other types of location. Where evidence of ritual activity clusters such places may be classified as 'natural places' in the sense of Bradley.56 How 'persistent' were such places? Caution is called for when using terms like 'continuity' and 'persistence'; as Van de Noort and O'Sullivan demonstrated by presenting a number of cases in which scientific dates could be systematically obtained.57 Often the presumed continuity turned out to be in fact non-continuity. Moreover, in dynamic alluvial wetland contexts continuity of certain forms of land use may well be linked to a specific landscape zone or an area with specific landscape characteristics, rather than to a specific fixed location within that zone or area. Incidentally, in the case of certain activities there may be period-specific differences in the extent to which they were localised.58

9 Predictability

Earlier we pointed out the 'palimpsest' character and the great time depth of 'sites'. Both phenomena are largely the product of a situation marked by continuity, of the landscape itself and of the way it was exploited. The landscape in the study area is much more stable than for example Holocene fluvial zones, which prior to the construction of dikes were highly dynamic. On favourable locations in this zone, such as levees, palimpsests do

56 Bradley 2000.
58 Hubert 1997; Fontijn 2002; Ashton et al. 2006.
occur but they lack the time depth of those on the Pleistocene sands. There, the regional rivers often were transformed into mere brooks in the course of the Holocene, after which meandering and erosion were confined to the existing valley. This meant that river dunes along those valleys were henceforth only exposed to local erosion. The degree of soil erosion of valley bottoms was highly variable and largely dependent on the meandering of each individual water course – which in our research area after ca. 2500 BC was being increasingly affected by human activities upstream.

The great time depth of settlement locations along rivers in the Pleistocene inland areas of North-west Europe is also the result of the stable position these areas occupy in regional settlement patterns, at least in the eastern Netherlands. Until the Middle Ages regional settlement patterns were characterised by, on the one hand, endemic mobility and, on the other, alternating phases of expansion and contraction. Favourable locations along water courses were marked by a high degree of settlement continuity. Raised bogs were the scene of ritual practices for millennia. For these reasons the presence of archaeological remains in the river valleys greatly depends on the landscape context and associated settlement patterns and infrastructure. Their preservation and availability to investigation is determined by depositional factors and conditions and by post-depositional processes. These, in turn, are the product not only of anthropogenic factors but also, and to a large extent, of subsequent fluvial dynamics, ground water dynamics and ground water chemistry. Along the middle and lower reaches of watercourses, where river valleys are wide, sedimentation processes prevail and waterlogged conditions are wide-spread, conditions for preservation tend to be much better than they are along the upper reaches. Also preservation conditions tend to be most favourable along rivers that constitute the oldest (Late Pleistocene) core of drainage systems. Such rivers have carved relatively deep valleys and have much accommodation space for the deposition of sediments (and hence archaeology). As a result not only the location but also the degree of preservation and the age of archaeological remains in alluvial wetland contexts are to a degree predictable. Chronological predictability depends on the availability of adequate geoarchaeological and geohydrological data as well as data on floodplain evolution in general. Access to and an understanding of the presence, character, distribution and internal relations of all information sources in contiguous dryland and wetland contexts allows further predictions regarding the presence of additional sources of information. The construction of a LLAND-diagram therefore may not only be helpful in selecting promising research options, but also to conduct targeted field work aimed at filling-in major gaps in the available dataset.
References

Ashton et al. 2006

Becker et al. 2001

Bork et al. 1998

Bradley 2000

Brandt, Waateringe, and Van der Leeuw 1987

Brown 1997

Brown 2009

Brown et al. 2013

Bulten, Van der Heijden, and Hamburg 2002

B. Coles 1992

B. Coles and J. Coles 1989

J. Coles 1991
J. Coles and Lawson 1987

Cronyn 2001

De Rooij (Unpublished)

Deeben et al. 1999

Deforce and Bastiaens 2006

Dotterweich 2008

Dreibrodt et al. 2010

Drenth and J. Roymans 2004

Dyselinck, Moser, and Witte 2012

Ebbers and Visschers 1983

Fontijn 2002
D.R. Fontijn. *Sacrificial Landscapes. Cultural Biographies of Persons, Objects and ‘Natural’
Fontijn 2003

Forysiak et al. 2010

Gerret, Opbroek, and Williams 2012

Gerritsen 2003

Gerritsen 2004

Gerritsen and Rensink 2004

Groenewoudt 2014

Groenewoudt 2002a

Groenewoudt 2002b
Groenewoudt 2004

Groenewoudt 2012

Groenewoudt et al. 2007

Hamburgh, Hogestein, and Peeters 1997

Haselgrove et al. 2001

Hilgers 2007

Howard and Macklin 1999

Howard, Macklin, and Passmore 2003

Hubert 1997

Huijbers 2004
Huisman and Deeben 2009

Jantzen et al. 2010

Jong 2012

Kars and Van Heeringen 2008

Kluiving and Guttman-Bond 2012

Kluiving, Lehmkuhl, and Schütt 2012

Kolen 1993

E. A. Koster 1982

E. Koster 2009

Krekelbergh 2008

Louwe Kooijmans 1974
Louwe Kooijmans 1987

Louwe Kooijmans 1993

Lubberink and Willemse 2009

Mazurkevich et al. 2009

Menotti 2012

Menotti and O’Sullivan 2013

Mol 2003

Pelisiak, Rybicka, and Ralska-Jasiewiczowa 2006

Pronk 2008

Pryor 2005

Purdy 1990
Raab et al. 2011

Renfrew and Bahn 2000

Rensink 2008a

Rensink, Gerritsen, and J. Roymans 2006

A. Roymans and Sprengers 2012

J. Roymans (Unpublished)

J. Roymans 2007

J. Roymans 2013

J. Roymans and Sprengers 2011

Schiffer 1972

Schiffer 1987

Schlanger 1992
S.H. Schlanger. “Recognizing Persistent Places in Anasazi Settlement Systems”. In

Schwann 1988

Smit 2010

Stern 2008

Sugita, Gaillard, and Broström 1999

Thomas and David 2008

Tolksdorf and Kaiser 2012

Van Beek 2009

Van Beek and Groenewoudt 2011

Van de Noort 2008

Van de Noort and O’Sullivan 2006

Van den Akker, Knibbe, and Maarleveld 1964

Vermeulen, Mittendorf, and Van der Wal 2012

Wassink 1999

Wentink 2006

Willemse 2005a

Willemse 2005b

Willemse 2008

Willemse and Groenewoudt 2012
Bert Groenewoudt
Dr. (Amsterdam 1994), studied Prehistory at the University of Amsterdam and works as a senior landscape archaeologist with the Cultural Heritage Agency of the Netherlands (RCE). Project manager of the Archaeological Research Agenda of the Netherlands. Doctoral thesis on prospection and assessment of archaeological sites. Current research focuses on man-landscape interaction, long-term processes of landscape change, settlement dynamics and off-site land use.

Dr. Bert Groenewoudt
Ministry of Education, Culture and Science
Cultural Heritage Agency
Smallepad 5 3811 MG Amersfoort The Netherlands

E-Mail: b.groenewoudt@cultureelerfgoed.nl