Daniel Knitter – Max Bergner – Barbara Horejs – Brigitta Schütt – Michael Meyer

Concepts of Centrality and Models of Exchange in Prehistoric Western Anatolia

Edited by Gerd Graßhoff and Michael Meyer, Excellence Cluster Topoi, Berlin

eTopoi ISSN 2192-2608
http://journal.topoi.org

Except where otherwise noted, content is licensed under a Creative Commons Attribution 3.0 License:
http://creativecommons.org/licenses/by/3.0
Daniel Knitter – Max Bergner – Barbara Horejs – Brigitta Schütt – Michael Meyer

Concepts of Centrality and Models of Exchange in Prehistoric Western Anatolia

Central Place; Melos; obsidian; trade network; gateway; Early Bronze Age.

An exchange of goods corresponds to an interaction between humans. Centrality is the measure of the concentration of such interactions—a central place its spatial manifestation. The absence of these regional or super-regional interactions is considered as marginality. In the prehistoric archaeological context, interactions are assessed using e.g. findings of ceramics and resources that are not present at the focused location, indicating connections and functions of more than local importance.

We investigate the interaction in terms of obsidian exchange at two different Early Bronze Age 1 (EBA1, ca. 3000–2600 BC) locations in Western Anatolia. The first, Çukuriçi Höyük, a settlement dating from the Neolithic to the Early Bronze Age, has been being excavated since 2006 and is interpreted as a central place for obsidian exchange or trade while the second, Yeni Yeldeğirmentepe, which was the subject of a field survey in 2009 and only showed traces of occupation from the Early Bronze Age, is interpreted as a marginal, subsistence based location, which, at present, seems not to be integrated in the obsidian exchange network. Of course the different methods of investigation, survey and excavation at the two sites offer different degrees of insight, but the achieved results are noteworthy and shall be discussed. Moreover, the results from Yeni Yeldeğirmentepe are taken as a selected case study and should be understood as pars pro toto for all EBA 1 sites in the valley analyzed and published so far.

Natural Environmental Conditions

The general environmental characteristic at both sites can be seen as comparable. They are characterized by a temperate climate, classified as Cs after Köppen and Geiger, with wet winters and hot and dry summers. In combination with the soils, especially in the alluvial plains, the area is favourable for agricultural purposes.

At a site specific level, the Çukuriçi Höyük is located in a tributary valley of the Küçük Menderes while the Yeni Yeldeğirmentepe is located on a small geological hill within the valley of the Bakırçay. In terms of agricultural use the location of the former may be seen as more suitable, since the area is less liable to seasonal floods and, due to geomorphological characteristics, is better drained (Fig. 1). The latter location within the floodplain of the Bakırçay is in this regard less suitable, since recent sedimentologic

1 Horejs et al. 2011, 48–50.
2 Horejs 2010, 64–65.
3 Horejs 2010.
4 The transition to today’s climate model was around 4.6 ka BC (Schulz and Paul 2002, 46), thus these general climatic characteristics may be understood as comparable. Kottek et al. 2006, 261.
5 Common soils are Rubefaciens or Chromic Cambisols and Luvisols (Walter and Breckle 1991, 12–14) as well as fertile Fluvisols in the alluvial plains and valleys (Spaargaren 2008, 281).
investigations indicate swampy conditions throughout time (Fig. 1b). These differences in the local supply, indicated by suitability for agricultural production, are important, since specialized activities, such as trade, are just possible when a certain surplus is produced to facilitate the effort of exchange.

A crucial factor is the dynamic Holocene landscape development. The floodplains have been filled with alluvial sediments of several meter thickness over the last 6000 years, thus many sites may be buried under these. Furthermore, due to the high sediment load of the rivers, their deltas prograded towards the sea. In this context, the Çukuriçi Höyük may be seen as a seaside location during the time of its occupation, with a several square kilometer large hinterland for local supply (Fig. 1c). The conditions around the Yeni Yeldeğirmentepe are different and less clear. Many meters of alluvial sediments were accumulated around the site, making assumptions about prehistoric conditions difficult. Nevertheless, its location within the floodplain indicates that the direct hinterland was prone to floods or backwater, influencing the reliability of annual agricultural production. Due to the different geomorphological and geological conditions, the site may not have had direct access to the sea in its history.

Obsidian Occurrence and Exchange

Different studies, investigating the occurrence of obsidian in Western Anatolia, indicate that obsidian was exchanged as raw material or already flaked tools at least since the Neolithic. The obsidian in Western Anatolian sites comes from different sources: besides the majority that is from the Cycladic island of Melos also obsidian of Yali in the Dodecanese and from Central Anatolia is known.

Melian obsidian and produced goods are found at seaside locations, while at sites located further inland, usually only finished products are found. Findings of large amounts of produced tools at the Çukuriçi Höyük support this idea of local production and their regional exchange. Roughly two thirds of the knapped stone artifacts from that site were, despite available local chert resources, made of obsidian and it seems likely that it was dispersed from the Çukuriçi Höyük to other sites in the region. The quite constantly large amount of roughly 60 to 70%, sometimes even more, of tools made of obsidian is constant throughout the excavated settlement phases, from the Neolithic to the Early Bronze Age. There is no evidence for a declining obsidian industry in the Early Bronze Age despite obviously available metal resources. A large amount of ovens and casting tools show that the settlement produced and probably distributed copper and copper objects at least in the Early Bronze Age, underlining its role as a production and trading location.

The Yeni Yeldeğirmentepe (as also all other EBA 1 sites in the valley) on the other hand showed no signs of a sophisticated stone or metal industry or imported resources. Apparently this settlement did not participate in any raw material exchange network since there is no obsidian and no signs of local metallurgy. The different spectrum of artifacts recovered at the two sites shows that the settlements were of different importance. This might be due to their different geographical locations, knowledge and attachment to

7 Schneider, personal communication; Schneider, Bebermeier, and Schütte 2010
8 Sieferle 1997, 95.
9 Kayan 1999, 542.
10 Kraft et al. 2003, 370–371, Fig. 8; Horejs et al. 2011, 37.
11 Schneider, Bebermeier, and Schütte 2010, 184–185.
12 Perlès, Takaöglu, and Gratuze 2011, 42–43.
14 Perlès, Takaöglu, and Gratuze 2011, 44–46.
16 Horejs 2010.
exchange networks, which might to some degree also be due to the apparently shorter occupation of the Yeni Yelde˘girmentepe.

Melian Obsidian can be found in most western Anatolian sites, with declining quantities further inland, as for example in Aphrodisias or Beycesultan, but also in higher quantities at e.g. Liman Tepe or Bakla Tepe, altogether clear hints that obsidian industry does play a role in EBA. In northwestern Anatolia on the other hand obsidian artifacts are a rather rare commodity compared to various sites in the Izmir region and the Çukuriçi Höyük in particular, for instance in Troy or Demircihüyük. This might be due to different exchange networks or harder transport routes. Also with a greater distance eastwards from the coast, other obsidian deposits in central Anatolia become available. Surprisingly, the Çukuriçi Höyük also received some obsidian from that region in the Early Bronze Age, which is another indicator for a wide ranging exchange network.

18 Lloyd and Mellaart 1962.
20 In our opinion, the amount of c. 15% obsidian in Demircihüyük seems not much in comparison to results at other sites discussed here, even more so if we would follow the published interpretations by Baykal-Seeher 1996 that the whole assemblage from EBA layers should possibly date in Chalcolithic periods. A detailed discussion of a complex chronological interpretation of Late Chalcolithic and Early Bronze Age lithic technologies cannot be undertaken here.
Synthesis

Due to findings of obsidian throughout the Western Anatolian coast, marine trade may be seen as common since Neolithic times. To facilitate sustainable trade it is mandatory that the local supplying hinterland is productive and that the site has access to regional and super-regional traffic or exchange networks: conditions that are present at the Çukuriçi Höyük and absent at the Yeni Yeldeğirmentepe. We presume that seaside locations on the Western Anatolian coast may be seen as gateway locations22 that function as focal points in the integration of its surrounding region into larger economic networks – in this regard obsidian exchange (Fig. 2a).23 The Çukuriçi Höyük, with its local supplying hinterland and its location that combines marine and terrestrial traffic, may be understood as such a gateway location (Fig. 2b). In contrast, the Yeni Yeldeğirmentepe does not have this locational advantage concerning traffic and its environs seem less suitable for a permanent local supply, indicating that it was just of local importance without regional or super-regional connections (Fig. 2b).

At present this is just a hypothesis since the state of knowledge is fragmented. Nevertheless, ongoing research in the surroundings of the Yeni Yeldeğirmentepe24 and Çukuriçi Höyük25 as well as at other sites of Western Anatolia like Bakla Tepe26 or Liman Tepe27 may lead to further important insights in the understanding of obsidian exchange.

22 Burghardt 1971; Hirth 1978.
23 McKenzie 1967, 5.
24 Horejs (in press).
25 Horejs et al. 2011.
26 Erkanal 2008a.
27 Erkanal 2008b; Şahoğlu 2008.
Bibliography

Baykal-Seeher 1996

Bergner, Horejs, and Pernicka 2009

Beven and Kirkby 1979

Burghardt 1971

Erkanal 2008a

Erkanal 2008b

GRASS Development Team 2011

Gatsov 1998

Georgiadis 2008

Grund 1906
Hirth 1978

Horejs (in press)

Horejs 2010

Horejs et al. 2011

Jarvis et al. 2008

Kayan 1999

Kottek et al. 2006

Kraft et al. 2003

Leurquin 1986

Lloyd and Mellaart 1962

Manfreda, Di Leo, and Sole 2011
McKenzie 1967

Perlès, Takaoğlu, and Gratuze 2011

Schneider, Bebermeier, and Schütt 2010

Schulz and Paul 2002

Sieferle 1997

Spaargaren 2008

Walter and Breckle 1991

Şahoğlu 2008

Daniel Knitter (corresponding author), Excellence Cluster Topoi, Research Area A-I-21, Freie Universität Berlin, Department of Earth Sciences, Physical Geography, Malteserstraße 74–100, 12249 Berlin, Germany, daniel.knitter@topoi.org

Max Bergner, Austrian Archaeological Institute, Franz Klein-Gasse 1, A–1190 Vienna, Austria

Barbara Horejs, Austrian Archaeological Institute, Franz Klein-Gasse 1, A–1190 Vienna, Austria
Brigitta Schütt, Excellence Cluster Topoi, Research Area A-I-21, Freie Universität Berlin, Department of Earth Sciences, Physical Geography, Malteserstraße 74-100, 12249 Berlin, Germany

Michael Meyer, Excellence Cluster Topoi, Research Area A-I-21, Freie Universität Berlin, Department of History and Cultural Studies, Prehistoric Archaeology, Altensteinstraße 15, 14195 Berlin, Germany